Title :
The Inverse Eigenvalue Problem for a Special Kind of Matrices
Author :
Liu, Zhibing ; Xu, Chengfeng ; Wang, Kanmin
Author_Institution :
Coll. of Sci., Jiujiang Univ., Jiujiang, China
Abstract :
In this paper we study a kind of inverse eigenvalue problem for a special kind of real symmetric matrices: the real symmetric Arrow-plus-Jacobi matrices. That is, matrices which look like arrow matrices forward and Jacobi backward, from the (p, p) station, 1 ≤ p ≤ n. We give a necessary and sufficient condition for the existence of such two matrices. Our results are constructive, in the sense that they generate an algorithmic procedure to construct the matrix.
Keywords :
Jacobian matrices; eigenvalues and eigenfunctions; Jacobi backward; arrow matrices forward; inverse eigenvalue problem; symmetric arrow-plus-Jacobi matrices; Eigenvalues and eigenfunctions; Inverse problems; Jacobian matrices; Nonlinear control systems; Presses; Sufficient conditions; Symmetric matrices; Eigenvalue; Matrix inverse eigenvalue problem; Symmetric Arrow-plus-Jacobi matrix;
Conference_Titel :
Computational Sciences and Optimization (CSO), 2011 Fourth International Joint Conference on
Conference_Location :
Yunnan
Print_ISBN :
978-1-4244-9712-6
Electronic_ISBN :
978-0-7695-4335-2
DOI :
10.1109/CSO.2011.274