DocumentCode :
2346053
Title :
Nonparametric kernel estimation for error density
Author :
Li, Zhu Yu ; Zou, Shu Zhao
Author_Institution :
Dept. of Math., Sichuan Univ., Chengdu, China
fYear :
1994
fDate :
27-29 Oct 1994
Firstpage :
93
Abstract :
Summary form only given. Consider a linear model, yi=x´ iβ+ei, i=1,2,..., x´is are p(⩾1) dimension known vectors and β(∈R°) is an unknown parametric vector and ei are assumed i.i.d.r.v.´s from a common unknown density function f(x) with med (ei)=0. Based on LAD (least absolute deviations) estimator β˜ of β, we propose a nonparametric method to estimate unknown f(x). A kernel estimator f˜n(x) is obtained. Large sample properties of f˜n(x) are studied. Some computational examples are also given
Keywords :
error statistics; estimation theory; nonparametric statistics; computational examples; density function; error density; least absolute deviations; linear model; nonparametric kernel estimation; parametric vector; sample properties; Enterprise resource planning; Estimation error; Kernel; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and Statistics, 1994. Proceedings., 1994 IEEE-IMS Workshop on
Conference_Location :
Alexandria, VA
Print_ISBN :
0-7803-2761-6
Type :
conf
DOI :
10.1109/WITS.1994.513920
Filename :
513920
Link To Document :
بازگشت