DocumentCode :
2346071
Title :
Neural networks for error correction of Hamming codes
Author :
Mayora-Ibarra, O. ; Gonzalez-Gutierrez, A. ; Ruiz-Suarez, J.C.
Author_Institution :
Inst. Tecnologico y de Estudios Superiores de Monterrey, Cuernavaca Morelos, Mexico
fYear :
1994
fDate :
27-29 Oct 1994
Firstpage :
94
Abstract :
A comparative analysis of three neural network models: backpropagation (BPP), bidirectional associative memory (BAM) and holographic associative memory (HAM); and a classical method for error-correction is presented. Each method is briefly described, results are reported and finally some advantages are concluded
Keywords :
Hamming codes; backpropagation; digital communication; error correction codes; neural nets; telecommunication computing; Hamming codes; backpropagation; bidirectional associative memory; classical method; comparative analysis; digital communication; error correction; holographic associative memory; neural networks; Associative memory; Error correction; Error correction codes; Hamming distance; Holographic optical components; Holography; Magnesium compounds; Neural networks; Steady-state; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory and Statistics, 1994. Proceedings., 1994 IEEE-IMS Workshop on
Conference_Location :
Alexandria, VA
Print_ISBN :
0-7803-2761-6
Type :
conf
DOI :
10.1109/WITS.1994.513921
Filename :
513921
Link To Document :
بازگشت