• DocumentCode
    2347853
  • Title

    Sparse random projection for efficient cancelable face feature extraction

  • Author

    Kim, Youngsung ; Toh, Kar-Ann

  • Author_Institution
    Biometrics Eng. Res. Center, Yonsei Univ., Seoul
  • fYear
    2008
  • fDate
    3-5 June 2008
  • Firstpage
    2139
  • Lastpage
    2144
  • Abstract
    Based on a recently proposed framework for cancelable biometric template generation, this paper focuses on boosting the computational efficiency using a sparse random projection. Comparing with a non-sparse random projection, we show empirically that the verification accuracy of templates generated by sparse random projection do not degrade while enjoying a more efficient feature extraction process than before. This work contributes to establishment of an algorithm for effective cancelable face template generation.
  • Keywords
    biometrics (access control); face recognition; feature extraction; random processes; cancelable face biometric template generation; cancelable face feature extraction; sparse random projection; Biometrics; Boosting; Computational efficiency; Data mining; Degradation; Eigenvalues and eigenfunctions; Face recognition; Feature extraction; Principal component analysis; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on
  • Conference_Location
    Singapore
  • Print_ISBN
    978-1-4244-1717-9
  • Electronic_ISBN
    978-1-4244-1718-6
  • Type

    conf

  • DOI
    10.1109/ICIEA.2008.4582897
  • Filename
    4582897