DocumentCode :
2348630
Title :
ISVM for Face Recognition
Author :
Sisodia, Deepti ; Shrivastava, Shailendra Kumar ; Jain, R.C.
Author_Institution :
I.T Dept., S.A.T.I., Vidisha, India
fYear :
2010
fDate :
26-28 Nov. 2010
Firstpage :
554
Lastpage :
559
Abstract :
The similarity of human faces, unpredictable variations and aging are the crucial obstacles in face recognition. To handle this if large set of training images are used then computational complexity will get increase as images are rather high dimension but if training set kept small, performance decreases. Since both classification and feature information are necessary for a recognition system DCT is used to lower the computational complexity and SVM for classification. Since SVM is a popular classification tool but the main disadvantage of SVM is its large memory requirement and computation time to deal with large data set. Therefore we have used incremental learning approach i.e. ISVM to avoid large training time and memory consumption for face recognition. The biggest advantage of using the proposed technique is that it not only decreases the training time and updating time but also improves the classification accuracy rate up to 100%. Experiments are performed on ORL face database and results has proved that not only the training time used by the ISVM is very less compared to SVM but also the recognition rate raised to 100%. Obtained results have presented accurate face recognition system using the proposed approach..
Keywords :
discrete cosine transforms; face recognition; image classification; learning (artificial intelligence); support vector machines; DCT; ISVM; ORL face database; computational complexity; data set; discrete cosine transform; face recognition; feature information; image classification; incremental learning approach; recognition rate; training images; Discrete Cosine Transform; Feature Extraction; Incremental SVM; Machine Learning; Support Vector Machine;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Communication Networks (CICN), 2010 International Conference on
Conference_Location :
Bhopal
Print_ISBN :
978-1-4244-8653-3
Electronic_ISBN :
978-0-7695-4254-6
Type :
conf
DOI :
10.1109/CICN.2010.109
Filename :
5702032
Link To Document :
بازگشت