Title : 
Tightness: A novel heuristic and a clustering mechanism to improve the interpretation of association rules
         
        
            Author : 
Natarajan, Rajesh ; Shekar, B.
         
        
            Author_Institution : 
Hexaware Technologies Limited, Chennai, India ¿ 600 017
         
        
        
        
        
        
            Abstract : 
In this paper we present a clustering-based approach to mitigate the ‘rule immensity’ and the resulting ‘understandability’ problem in association rule (AR) mining. Clustering ‘similar’ rules facilitates exploration of connections among rules and the discovery of underlying structures. We first introduce the notion of ‘tightness’ of an AR. It reveals the strength of binding between various items present in an AR. We elaborate on its usefulness in the retail market-basket context and develop a distance-function on the basis of ‘tightness.’ Usage of this distance function is exemplified by clustering a small artificial set of ARs with the help of average-linkage method. Clusters thus obtained are compared with those obtained by running a standard method (from recent data mining literature) on the same data set.
         
        
            Keywords : 
Argon; Association rules; Clustering algorithms; Costs; Dairy products; Data mining; Marketing and sales; Merging; Transaction databases; USA Councils;
         
        
        
        
            Conference_Titel : 
Information Reuse and Integration, 2008. IRI 2008. IEEE International Conference on
         
        
            Conference_Location : 
Las Vegas, NV, USA
         
        
            Print_ISBN : 
978-1-4244-2659-1
         
        
            Electronic_ISBN : 
978-1-4244-2660-7
         
        
        
            DOI : 
10.1109/IRI.2008.4583048