DocumentCode :
2350817
Title :
Techniques for neural network identification of phytoplankton for the EurOPA flow cytometer
Author :
Boddy, L. ; Wilkins, M.F. ; Morris, C.W. ; Tarran, G.A. ; Burkill, P.H. ; Jonker, R.R.
Author_Institution :
Sch. of Pure & Applied Biol., Univ. of Wales Coll. of Cardiff, UK
Volume :
1
fYear :
1994
fDate :
13-16 Sep 1994
Abstract :
The EurOPA instrument is a purpose-built marine flow cytometer to be taken to sea for rapid analysis of seawater samples for phytoplankton content. To take advantage of the potentially high rate of data capture, neural network classifiers will be incorporated into the package to provide an integrated approach to plankton analysis
Keywords :
aquaculture; biological techniques; geophysical signal processing; neural nets; oceanographic techniques; pattern classification; EurOPA flow cytometer; biophysical measurement technique; classifier; geophysics computing; instrument; marine biology; monitoring; neural net; neural network identification; ocean; optical method; phytoplankton; plankton; sea; seawater sample; signal processing; Artificial neural networks; Biology computing; Fluorescence; Image motion analysis; Instruments; Marine vegetation; Neural networks; Optical scattering; Particle measurements; Sea measurements;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
OCEANS '94. 'Oceans Engineering for Today's Technology and Tomorrow's Preservation.' Proceedings
Conference_Location :
Brest
Print_ISBN :
0-7803-2056-5
Type :
conf
DOI :
10.1109/OCEANS.1994.363967
Filename :
363967
Link To Document :
بازگشت