Title :
Saving energy with architectural and frequency adaptations for multimedia applications
Author :
Hughes, Christopher J. ; Srinivasan, Jayanth ; Adve, Sarita V.
Author_Institution :
Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA
Abstract :
General-purpose processors are expected to be increasingly employed for multimedia workloads on systems where reducing energy consumption is an important goal. Researchers have proposed the use of two forms of hardware adaptation - architectural adaptation and dynamic voltage (and frequency) scaling or DVS - to reduce energy. This paper develops and evaluates an integrated algorithm to control both architectural adaptation and DVS targeted to multimedia applications. It also examines the interaction between the two forms of adaptation, identifying when each will perform better in isolation and when the addition of architectural adaptation will benefit DVS. Our adaptation control algorithm is effective in saving energy and exploits most of the available potential. For the applications and systems studied, DVS is consistently better than architectural adaptation in isolation. The addition of architectural adaptation to DVS benefits some applications, but not all. Finally, in a seemingly counter-intuitive result, we find that while less aggressive architectures reduce energy for fixed frequency hardware, with DVS, more aggressive architectures are often more energy efficient.
Keywords :
computer architecture; multimedia systems; architectural adaptation; architectural adaptations; dynamic voltage scaling; frequency adaptations; general-purpose processors; hardware adaptation; multimedia workloads; Application software; Computer architecture; Computer science; Dynamic voltage scaling; Energy consumption; Equations; Frequency; Hardware; Multimedia systems; Voltage control;
Conference_Titel :
Microarchitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE International Symposium on
Print_ISBN :
0-7965-1369-7
DOI :
10.1109/MICRO.2001.991123