Title :
Modeling of compact explosively-driven ferroelectric generators
Author :
Bolyard, D. ; Neuber, A. ; Krile, J. ; Kristiansen, M.
Author_Institution :
Dept. of Electr. & Comput. Eng., Texas Tech Univ. Lubbock, Lubbock, TX, USA
Abstract :
Hydrodynamic pressure simulations combined with an empirical algorithm are used to model the open-circuit voltage output of several explosively compressed ferroelectric materials. The empirical algorithm was initially developed using detonating cord containing PETN and a metal driver element to compress the ferroelectric materials while the open-circuit voltage is recorded. A hydrodynamic code suite, CTH from Sandia National Labs, enables calculating Shockwave propagation and localized pressures. The resulting pressure profile in the ferroelectric material is then used as input for an empirically derived algorithm to calculate the predicted open-circuit voltage of the ferroelectric material. This previously developed empirical algorithm exhibited reasonable correlation between experimental and calculated open-circuit output voltages, but began to deviate when more powerful explosives were used. Hence, the amount of explosive material and geometry of the metal drive was varied to produce a wide range of peak pressures, including pressures higher then the maximum of 3.1 GPa previously modeled by the empirical algorithm. This data serves as the base to further develop the empirical algorithm for various ferroelectric materials and to more accurately model the open-circuit output voltage (experimentally observed range, normalized for thickness, of 1.3 to 3.8 kV/mm) over the wide range of applied pressures.
Keywords :
electric generators; ferroelectric devices; ferroelectric materials; hydrodynamics; compact explosively-driven ferroelectric generator modelling; detonating cord; empirical algorithm; explosively compressed ferroelectric materials; hydrodynamic pressure simulations; localized pressures; metal driver element; open-circuit voltage model; shockwave propagation; Algorithm design and analysis; Driver circuits; Explosives; Ferroelectric materials; Generators; Hydrodynamics; Materials;
Conference_Titel :
Power Modulator and High Voltage Conference (IPMHVC), 2010 IEEE International
Conference_Location :
Atlanta, GA
Print_ISBN :
978-1-4244-7131-7
DOI :
10.1109/IPMHVC.2010.5958310