Title :
Randomness-efficient oblivious sampling
Author :
Bellare, Mihir ; Rompel, John
Author_Institution :
IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA
Abstract :
We introduce a natural notion of obliviousness of a sampling procedure, and construct a randomness-efficient oblivious sampler. Our sampler uses O(l+log δ-1·log l) coins to output m=poly(ε-1, log δ-1, log l) sample points x1, …, xm, ∈ {0, 1}1 such that Pr[|1/mΣi=1mf(xi )-E[f]|<ε]⩾1-δ for any function f: {0, 1}1 →[0, 1]. We apply this sampling procedure to reduce the randomness required to halve the number of rounds of interaction in an Arthur Merlin proof system. Given a 2g(n) round AM proof for L in which Arthur sends l(n) coins per round and Merlin responds with a q(n) bit string, we construct a g(n) round AM proof for L in which Arthur sends O(l+(q+log g)·log l) coins per round and Merlin responds with a poly(n) bit string
Keywords :
computational complexity; Arthur Merlin proof system; computational complexity; randomness-efficient oblivious sampler; randomness-efficient oblivious sampling; sampling procedure; Boolean functions; Electronic mail; Polynomials; Random variables; Sampling methods; Security; Tail;
Conference_Titel :
Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on
Conference_Location :
Santa Fe, NM
Print_ISBN :
0-8186-6580-7
DOI :
10.1109/SFCS.1994.365687