• DocumentCode
    2358622
  • Title

    Non-Euclidean Spring Embedders

  • Author

    Kobourov, Stephen G. ; Wampler, Kevin

  • Author_Institution
    Dept. of Comput. Sci., Arizona Univ., Tucson, AZ
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    207
  • Lastpage
    214
  • Abstract
    We present a method by which force-directed algorithms for graph layouts can be generalized to calculate the layout of a graph in an arbitrary Riemannian geometry. The method relies on extending the Euclidean notions of distance, angle, and force-interactions to smooth nonEuclidean geometries via projections to and from appropriately chosen tangent spaces. In particular, we formally describe the calculations needed to extend such algorithms to hyperbolic and spherical geometries
  • Keywords
    computational geometry; data visualisation; graph theory; technical drawing; Riemannian geometry; force-directed algorithm; graph drawing; graph visualization; hyperbolic geometry; information visualization; nonEuclidean geometry; spherical geometry; spring embedders; Chromium; Computational geometry; Computer interfaces; Embedded computing; Information geometry; Information systems; Layout; Mathematics; Springs; Visualization; force-directed algorithms; graph drawing; hyperbolic space; information visualization; non-Euclidean geometry; spherical space; spring embedders;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Visualization, 2004. INFOVIS 2004. IEEE Symposium on
  • Conference_Location
    Austin, TX
  • ISSN
    1522-404X
  • Print_ISBN
    0-7803-8779-3
  • Type

    conf

  • DOI
    10.1109/INFVIS.2004.49
  • Filename
    1382910