Title :
Modeling electrocardiogram using Yule-Walker equations and kernel machines
Author :
Kallas, Maya ; Francis, Clovis ; Honeine, Paul ; Amoud, Hassan ; Richard, Cédric
Author_Institution :
Lab. d´´Anal. et de Surveillance des Syst. (LASYS), Lebanese Univ., Tripoli, Lebanon
Abstract :
One may monitor the heart normal activity by analyzing the electrocardiogram. We propose in this paper to combine the principle of kernel machines, that maps data into a high dimensional feature space, with the autoregressive (AR) technique defined using the Yule-Walker equations, which predicts future samples using a combination of some previous samples. A pre-image technique is applied in order to get back to the original space in order to interpret the predicted sample. The relevance of the proposed method is illustrated on real electrocardiogram from the MIT benchmark.
Keywords :
autoregressive processes; electrocardiography; medical signal processing; Yule-Walker equations; autoregressive technique; electrocardiogram modeling; high dimensional feature space; kernel machines principle; preimage technique; Autoregressive processes; Electrocardiography; Equations; Heart; Kernel; Mathematical model; Time series analysis; ECG signals; autoregressive model; kernel machines; nonlinear models; pre-image problem;
Conference_Titel :
Telecommunications (ICT), 2012 19th International Conference on
Conference_Location :
Jounieh
Print_ISBN :
978-1-4673-0745-1
Electronic_ISBN :
978-1-4673-0746-8
DOI :
10.1109/ICTEL.2012.6221217