DocumentCode :
2366178
Title :
Bayesian denoising based on the MAP estimation in wavelet-domain using Bessel K form prior
Author :
Boubchir, Larbi ; Fadili, Jalal M.
Author_Institution :
Image Process. Group, UMR CNRS, Caen, France
Volume :
1
fYear :
2005
fDate :
11-14 Sept. 2005
Abstract :
In this paper, a nonparametric Bayesian estimator in the wavelet domain using the Bessel K form (BKF) distribution will be presented. Our first contribution is to show how the BKF prior is suited to characterize images belonging to Besov spaces. Exploiting this prior, our second contribution is to design a Bayesian L1-loss maximum a posteriori estimator nonlinear denoiser, for which we formally establish the mathematical properties. Finally, a comparative study is carried to show the effectiveness of our Bayesian denoiser compared to other denoising approaches.
Keywords :
Bayes methods; image denoising; maximum likelihood estimation; wavelet transforms; Bayesian denoising; Besov spaces; Bessel K form distribution; MAP estimation; mathematical properties; maximum a posteriori estimator nonlinear denoiser; nonparametric Bayesian estimator; wavelet-domain; Bayesian methods; Image processing; Maximum a posteriori estimation; Noise reduction; Probability distribution; Tail; Wavelet analysis; Wavelet coefficients; Wavelet domain; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2005. ICIP 2005. IEEE International Conference on
Print_ISBN :
0-7803-9134-9
Type :
conf
DOI :
10.1109/ICIP.2005.1529700
Filename :
1529700
Link To Document :
بازگشت