Title :
Anti-slip Readhesion Control of Electric Commuter Train Based on Disturbance Observer Considering Bogie Dynamics
Author :
Ohishi, Kiyoshi ; Kadowaki, Satoshi ; Smizu, Yosuke ; Sano, Takashi ; Yasukawa, Shinobu ; Koseki, Takafumi
Author_Institution :
Dept. of Electr. Eng., Nagaoka Univ. of Technol., Niigata
Abstract :
This paper proposes a new anti-slip readhesion control system for electric railway vehicle driven by inverter-fed induction motors. This paper designs an instantaneous tangential force coefficient estimator between driving wheel and rail, which is based on disturbance observer. The torque command of proposed system regulates to exceed this estimated tangential force coefficient in order to avoid undesirable slip phenomenon of driving wheels. For the actual bogie of electric commuter train, we have already proposed the anti-slip readhesion control system based on the ordinary disturbance observer and the speed sensor-less vector control. This system has the fine torque response for slip condition. However, this system cannot consider the vibration phenomenon of actual bogie dynamics of electric commuter train. In order to extend the anti-slip readhesion control to the actual bogie system considering the vibration phenomenon, this paper proposes a new anti-slip readhesion control based on a new high order disturbance observer considering the first resonant frequency. The experimental results and the numerical simulation results confirm the validity of the proposed control system
Keywords :
induction motors; invertors; observers; railway electrification; velocity control; wheels; anti-slip readhesion control; bogie dynamics; disturbance observer; driving wheel; electric commuter train; electric railway vehicle; instantaneous tangential force coefficient; inverter-fed induction motors; speed sensor-less vector control; Control systems; Electric vehicles; Force sensors; Induction motors; Machine vector control; Rail transportation; Torque; Vehicle driving; Vehicle dynamics; Wheels;
Conference_Titel :
IEEE Industrial Electronics, IECON 2006 - 32nd Annual Conference on
Conference_Location :
Paris
Print_ISBN :
1-4244-0390-1
DOI :
10.1109/IECON.2006.347734