Title :
Statistical Inference of Computer Virus Propagation Using Non-Homogeneous Poisson Processes
Author :
Okamura, Hiroyuki ; Tateishi, Kazuya ; Dohi, Tadashi
Author_Institution :
Hiroshima Univ., Hiroshima
Abstract :
This paper presents statistical inference of computer virus propagation using non-homogeneous Poisson processes (NHPPs). Under some mathematical assumptions, the number of infected hosts can be modeled by an NHPP In particular, this paper applies a framework of mixed-type NHPPs to the statistical inference of periodic virus propagation. The mixed-type NHPP is defined by a superposition of NHPPs. In numerical experiments, we examine a goodness-of-fit criterion of NHPPs on fitting to real virus infection data, and discuss the effectiveness of the model-based prediction approach for computer virus propagation.
Keywords :
computer viruses; statistical analysis; stochastic processes; computer virus propagation; nonhomogeneous Poisson process; statistical inference; Computer viruses; Computer worms; Internet; Invasive software; Mathematical model; Parameter estimation; Quantum computing; Reliability engineering; Software reliability; Stochastic processes; EM algorithm; computer virus; goodness-of-fit test; mixed-type model; non-homogeneous Poisson process;
Conference_Titel :
Software Reliability, 2007. ISSRE '07. The 18th IEEE International Symposium on
Conference_Location :
Trollhattan
Print_ISBN :
978-0-7695-3024-6
DOI :
10.1109/ISSRE.2007.28