Author_Institution :
Comput. Sci. Div., Univ. of California, Berkeley, Berkeley, CA, USA
Abstract :
We define a combinatorial checkerboard to be a function f:{1, ⋯, m}d → {1, -1} of the form f(u1, ⋯, ud) = Πi=1d fi(ui) for some functions fi:{1, ⋯, m} → {1, -1}. This is a variant of combinatorial rectangles, which can be defined in the same way but using {0, 1} instead of {1, -1}. We consider the problem of constructing explicit pseudorandom generators for combinatorial checkerboards. This is a generalization of small-bias generators, which correspond to the case m=2. We construct a pseudorandom generator that ϵ-fools all combinatorial checkerboards with seed length O(log m + log d·log log d + log3/2 1/ϵ). Previous work by Impagliazzo, Nisan, and Wigderson implies a pseudorandom generator with seed length O(log m + log2 d + log d·log 1/ϵ). Our seed length is better except when 1/ϵ ≥ dω(log d).
Keywords :
combinatorial mathematics; computational complexity; random number generation; combinatorial checkerboards; combinatorial rectangles; pseudorandom generators; small bias generators; Additives; Eigenvalues and eigenfunctions; Generators; Heart; Logic gates; Polynomials; Wires; combinatorial checkerboards; pseudorandom generators;