DocumentCode :
2378352
Title :
Sparse generalized Laguerre-Volterra model of neural population dynamics
Author :
Song, Dong ; Chan, Rosa H M ; Marmarelis, Vasilis Z. ; Hampson, Robert E. ; Deadwyler, Sam A. ; Berger, Theodore W.
Author_Institution :
Dept. of Biomed. Eng., Univ. of Southern California, Los Angeles, CA, USA
fYear :
2009
fDate :
3-6 Sept. 2009
Firstpage :
4555
Lastpage :
4558
Abstract :
To understand the function of a brain region, e.g., hippocampus, it is necessary to model its input-output property. Such a model can serve as the computational basis of the development of cortical prostheses restoring the transformation of population neural activities performed by the brain region. We formulate a sparse generalized Laguerre-Volterra model (SGLVM) for the multiple-input, multiple-output (MIMO) transformation of spike trains. A SGLVM consists of a set of feedforward Laguerre-Volterra kernels, a feedback Laguerre-Volterra kernel, and a probit link function. The sparse model representation involving only significant self and cross terms is achieved through statistical model selection and cross-validation methods. The SGLVM is applied successfully to the hippocampal CA3-CA1 population dynamics.
Keywords :
biocontrol; brain; feedback; feedforward; neurophysiology; prosthetics; stochastic processes; cortical prosthesis; feedback Laguerre-Volterra kernel; feedforward Laguerre-Volterra kernel; hippocampal CA3-CA1 population dynamics; multiple-input multiple-output transformation; neural activity; neural population dynamics; sparse generalized Laguerre-Volterra model; sparse model representation; spike trains; statistical model selection; Action Potentials; Algorithms; Animals; CA1 Region, Hippocampal; CA3 Region, Hippocampal; Hippocampus; Models, Neurological; Nonlinear Dynamics; Normal Distribution; Rats; Reproducibility of Results; Statistics, Nonparametric;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
Conference_Location :
Minneapolis, MN
ISSN :
1557-170X
Print_ISBN :
978-1-4244-3296-7
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/IEMBS.2009.5332719
Filename :
5332719
Link To Document :
بازگشت