DocumentCode :
2378755
Title :
Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks
Author :
Arizmendi, Carlos ; Romero, Enrique ; Alquezar, René ; Caminal, Pere ; Díaz, Ivan ; Benito, Salvador ; Giraldo, Beatriz F.
Author_Institution :
Dep. of LSI, Tech. Univ. of Catalonia (UPC), Barcelona, Spain
fYear :
2009
fDate :
3-6 Sept. 2009
Firstpage :
4343
Lastpage :
4346
Abstract :
The process of weaning from mechanical ventilation is one of the challenges in intensive care. 149 patients under extubation process (T-tube test) were studied: 88 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 23 patients with successful test but that had to be reintubated before 48 hours (group R). Each patient was characterized using 8 time series and 6 statistics extracted from respiratory and cardiac signals. A moving window statistical analysis was applied obtaining for each patient a sequence of patterns of 48 features. Applying a cluster analysis two groups with the majority dataset were obtained. Neural networks were applied to discriminate between patients from groups S, F and R. The best performance obtained was 84.0% of well classified patients using a linear perceptron trained with a feature selection procedure (that selected 19 of the 48 features) and taking as input the main cluster centroid. However, the classification baseline 69.8% could not be improved when using the original set of patterns instead of the centroids to classify the patients.
Keywords :
data mining; electrocardiography; feature extraction; learning (artificial intelligence); medical signal processing; patient care; pattern clustering; perceptrons; pneumodynamics; signal classification; time series; ECG signal; T-tube test; cardiac signal; cluster analysis; cluster centroid; extubation process; feature extraction; feature selection procedure; intensive care unit; linear perceptron training; mechanical ventilation; moving window statistical analysis; neural network; patient data mining; patient pattern classification; reintubation process; respiratory signal; spontaneous breathing; time series; weaning trial; Cluster Analysis; Computer Simulation; Computers; Data Interpretation, Statistical; Electrocardiography; Equipment Design; Humans; Models, Statistical; Monitoring, Physiologic; Neural Networks (Computer); Respiration; Respiration, Artificial; Ventilator Weaning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
Conference_Location :
Minneapolis, MN
ISSN :
1557-170X
Print_ISBN :
978-1-4244-3296-7
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/IEMBS.2009.5332742
Filename :
5332742
Link To Document :
بازگشت