DocumentCode :
2379841
Title :
Computing the Jordan canonical form in finite precision arithmetic
Author :
Suzuki, Takumi ; Suzuki, Takumi
Author_Institution :
Univ. of Yamanashi, Kofu
fYear :
2006
fDate :
26-29 Sept. 2006
Firstpage :
39
Lastpage :
39
Abstract :
The authors propose a criterion how to decide a cluster of eigenvalues to be a multiple eigenvalue or nearly multiple eigenvalues in finite precision arithmetic. If the matrix has a multiple eigenvalue, the eigenvector and the generalized ones are computed by their method, and therefore the Jordan canonical form can be derived. Results of numerical experiments for several kinds of matrices are shown.
Keywords :
eigenvalues and eigenfunctions; matrix algebra; Jordan canonical form; eigenvalues cluster; finite precision arithmetic; multiple eigenvalue; Arithmetic; Eigenvalues and eigenfunctions; Humans; Information processing; Matrix decomposition; Singular value decomposition; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Scientific Computing, Computer Arithmetic and Validated Numerics, 2006. SCAN 2006. 12th GAMM - IMACS International Symposium on
Conference_Location :
Duisburg
Print_ISBN :
978-0-7695-2821-2
Type :
conf
DOI :
10.1109/SCAN.2006.13
Filename :
4402429
Link To Document :
بازگشت