DocumentCode :
2379846
Title :
Non-fragile H filter design for discrete-time systems via LMI approach
Author :
Che, Wei-Wei ; Yang, Guang-hong
Author_Institution :
Coll. of Inf. Sci. & Eng., Northeastern Univ., Shenyang
fYear :
2008
fDate :
11-13 June 2008
Firstpage :
19
Lastpage :
24
Abstract :
This paper presents new non-fragile Hinfin filter design methods for linear discrete-time systems. The filter to be designed is assumed to be with additive gain variations, which reflect the FWL effects in filter digital implementations. A notion of structured vertex separator is proposed to approach the problem, and exploited to develop sufficient conditions for the non-fragile Hinfin filter design in terms of solutions to a set of linear matrix inequalities (LMIs). Moreover, to reduce the design conservativeness, the slack variable method is adopted to realize the decoupling between the Lyapunov matrix and the system dynamic matrix. The designs render the augmented system asymptotically stable and guarantee the Hinfin attenuation level less than a prescribed level. A numerical example is given to illustrate the design methods and the design benefits.
Keywords :
Hinfin control; Lyapunov matrix equations; asymptotic stability; discrete time systems; filtering theory; linear matrix inequalities; linear systems; LMI approach; Lyapunov matrix; additive gain variations; asymptotic stability; linear discrete-time systems; linear matrix inequalities; nonfragile Hinfin filter design; Control systems; Design methodology; Digital filters; Filtering; Linear matrix inequalities; Nonlinear filters; Particle separators; Sufficient conditions; Symmetric matrices; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2008
Conference_Location :
Seattle, WA
ISSN :
0743-1619
Print_ISBN :
978-1-4244-2078-0
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2008.4586459
Filename :
4586459
Link To Document :
بازگشت