DocumentCode :
2383948
Title :
Calculating the strength of ties of a social network in a semantic search system using hidden Markov models
Author :
El-Sherif, Shimaa M. ; Eberlein, Armin ; Far, Behrouz
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Calgary, Calgary, AB, Canada
fYear :
2011
fDate :
9-12 Oct. 2011
Firstpage :
2755
Lastpage :
2760
Abstract :
The Web of information has grown to millions of independently evolved decentralized information repositories. Decentralization of the web has advantages such as no single point of failure and improved scalability. Decentralization introduces challenges such as ontological, communication and negotiation complexity. This has given rise to research to enhance the infrastructure of the Web by adding semantic to the search systems. In this research we view semantic search as an enabling technique for the general Knowledge Management (KM) solutions. We argue that, semantic integration, semantic search and agent technology are fundamental components of an efficient KM solution. This research aims to deliver a proof-of-concept for semantic search. A prototype agent-based semantic search system supported by ontological concept learning and contents annotation is developed. In this prototype, software agents, deploy ontologies to organize contents in their corresponding repositories; improve their own search capability by finding relevant peers and learn new concepts from each other; conduct search on behalf of and deliver customized results to the users; and encapsulate complexity of search and concept learning process from the users. A unique feature of this system is that the semantic search agents form a social network. We use Hidden Markov Model (HMM) to calculate the tie strengths between agents and their corresponding ontologies. The query will be forwarded to those agents with stronger ties and relevant documents are returned. We have shown that this will improve the search quality. In this paper, we illustrate the factors that affect the strength of the ties and how these factors can be used by HMM to calculate the overall tie strength.
Keywords :
hidden Markov models; knowledge management; learning (artificial intelligence); ontologies (artificial intelligence); social networking (online); software agents; World Wide Web; agent technology; agent-based semantic search system; contents annotation; decentralized information repositories; hidden Markov models; knowledge management; negotiation complexity; ontological concept learning; semantic integration; social network; software agents; Hidden Markov models; Mathematical model; Ontologies; Probability; Semantic Web; Semantics; Social network services; Hidden Markov Model; multi-agent system; semantic search; social networks; tie strength;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference on
Conference_Location :
Anchorage, AK
ISSN :
1062-922X
Print_ISBN :
978-1-4577-0652-3
Type :
conf
DOI :
10.1109/ICSMC.2011.6084089
Filename :
6084089
Link To Document :
بازگشت