Title :
Hamilton-jacobi-bellman equations for quantum optimal control
Author :
Gough, J. ; Belavkin, V.A. ; Srnolyanov, O.G.
Author_Institution :
Lomonosov (M.V.) Moscow State Univ.
fDate :
May 30 2006-June 2 2006
Abstract :
One develops a Hamilton-Jacobi-Bellman equation and a stochastic Hamilton-Jacobi-Bellman equation for quantum optimal feedback control. In this paper we do not discuss in details how to find the optimal control functions; we would like to notice only that the corresponding generalizations of the classical Pontryagin maximum principle can be obtained and used
Keywords :
Banach spaces; feedback; maximum principle; quantum theory; stochastic processes; Banach space; Hamilton-Jacobi-Bellman equation; Pontryagin maximum principle; quantum optimal feedback control; quantum system; stochastic Hamilton-Jacobi-Bellman equation; Control systems; Cost function; Diffraction; Equations; Extraterrestrial measurements; Feedback control; Optimal control; Quantum mechanics; Stochastic processes; Technological innovation;
Conference_Titel :
Days on Diffraction, Proceedings of the International Conference. 2006
Conference_Location :
St. Petersburg
Print_ISBN :
5-9651-0226-7
DOI :
10.1109/DD.2006.348159