DocumentCode :
2384355
Title :
Optimal stabilization using Lyapunov measure
Author :
Raghunathan, Arvind U. ; Vaidya, Umesh
Author_Institution :
United Technol. Res. Center, East Hartford, CT
fYear :
2008
fDate :
11-13 June 2008
Firstpage :
1746
Lastpage :
1751
Abstract :
The focus of the paper is on the computation of optimal feedback stabilizing control for discrete time control system. We use Lyapunov measure, dual to the Lyapunov function, for the design of optimal stabilizing feedback controller. The linear Perron-Frobenius operator is used to pose the optimal stabilization problem as an infinite dimensional linear program. Finite dimensional approximation of the linear program is obtained using set oriented numerical methods. Simulation results for the optimal stabilization of periodic orbit in one dimensional logistic map are presented.
Keywords :
Lyapunov methods; discrete time systems; feedback; multidimensional systems; optimal control; stability; Lyapunov measure; dimensional logistic map; discrete time control system; finite dimensional approximation; infinite dimensional linear program; linear Perron-Frobenius operator; optimal feedback stabilizing control; optimal stabilization; Adaptive control; Control systems; Cost function; Extraterrestrial measurements; Linear approximation; Lyapunov method; Nonlinear equations; Nonlinear systems; Optimal control; Stability analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2008
Conference_Location :
Seattle, WA
ISSN :
0743-1619
Print_ISBN :
978-1-4244-2078-0
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2008.4586744
Filename :
4586744
Link To Document :
بازگشت