DocumentCode :
2384627
Title :
Localized data assimilation in the ionosphere-thermosphere using a sampled-data unscented Kalman filter
Author :
Kim, I.S. ; Pawlowski, D.J. ; Ridley, A.J. ; Bernstein, D.S.
Author_Institution :
Dept. of Aerosp. Eng., Univ. of Michigan, Ann Arbor, MI
fYear :
2008
fDate :
11-13 June 2008
Firstpage :
1849
Lastpage :
1854
Abstract :
We apply the unscented Kalman filter (UKF) to data assimilation based on the vertical one-dimensional global ionosphere-thermosphere model, which models the highly coupled, strongly nonlinear Earth´s upper atmosphere. To reduce the computational complexity of UKF, we introduce a localized, sampled-data update scheme with frozen-intersample error covariance, and examine its performance through numerical simulation.
Keywords :
Kalman filters; data assimilation; geophysical signal processing; ionosphere; sampled data filters; thermosphere; frozen-intersample error covariance; global ionosphere-thermosphere model; localized data assimilation; nonlinear Earth upper atmosphere; sampled-data unscented Kalman filter; sampled-data update; Atmospheric modeling; Data assimilation; Guidelines; Jacobian matrices; Noise measurement; Nonlinear systems; Particle filters; Riccati equations; State estimation; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2008
Conference_Location :
Seattle, WA
ISSN :
0743-1619
Print_ISBN :
978-1-4244-2078-0
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2008.4586761
Filename :
4586761
Link To Document :
بازگشت