Title :
Extremal polynomials for codes in polynomial metric spaces
Author :
Nikova, Svetla ; Nikov, Ventsislav
Author_Institution :
Dept. of Electr. Eng., Katholieke Univ., Leuven, Belgium
Abstract :
Let M be a polynomial metric space (PMS) with metric d(x,y) and standard substitution t=σ(d(x,y)). Any finite nonempty subset C of M is called a code. A code for which σ(d(x,y))⩽σ(d) (x,y∈C) and d is the minimum distance of C is an (M,|C|,σ)-code. We give some properties of the so called test functions for codes and we improve the Levenshtein bound with polynomials of degree h(σ)+2 and h(σ)+3
Keywords :
codes; polynomials; Levenshtein bound; codes; extremal polynomials; finite nonempty subset; minimum distance; polynomial metric spaces; standard substitution; test function; Extraterrestrial measurements; Informatics; Linear programming; Mathematics; Polynomials; Quaternions; Sufficient conditions; Testing;
Conference_Titel :
Information Theory, 2000. Proceedings. IEEE International Symposium on
Conference_Location :
Sorrento
Print_ISBN :
0-7803-5857-0
DOI :
10.1109/ISIT.2000.866350