DocumentCode :
2385060
Title :
Superpixel-based classification of polarimetric synthetic aperture radar images
Author :
Liu, Bin ; Hu, Hao ; Wang, Huanyu ; Wang, Kaizhi ; Liu, Xingzhao ; Yu, Wenxian
Author_Institution :
Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
fYear :
2011
fDate :
23-27 May 2011
Firstpage :
606
Lastpage :
611
Abstract :
Nowadays, polarimetric synthetic aperture radar (PolSAR) image classification is an important and widely studied topic. To overcome the limitations of pixel-based classification methods, we present, in this paper, a novel superpixel-based classification framework for PolSAR images. The framework takes the spatial relations between pixels into account and fully uses the statistical characteristics and contour information of PolSAR data. The framework is capable of integrating various inherent features of PolSAR data, improving classification accuracies, and making the results more understandable. Experiments on the AIRSAR data set show that the framework provides a promising solution for classifying PolSAR images.
Keywords :
image classification; radar imaging; radar polarimetry; statistical analysis; synthetic aperture radar; AIRSAR data set; PolSAR data; PolSAR image classification; PolSAR images; classification accuracy; contour information; pixel-based classification methods; polarimetric synthetic aperture radar images; spatial relations; statistical characteristics; superpixel-based classification framework; Accuracy; Covariance matrix; Image edge detection; Nickel; Pixel; Scattering; Speckle;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Radar Conference (RADAR), 2011 IEEE
Conference_Location :
Kansas City, MO
ISSN :
1097-5659
Print_ISBN :
978-1-4244-8901-5
Type :
conf
DOI :
10.1109/RADAR.2011.5960609
Filename :
5960609
Link To Document :
بازگشت