DocumentCode :
2385599
Title :
Worst-case bounds for the redundancy of sequential lossless codes and for the logarithmic loss of predictors
Author :
Cesa-Bianchi, Nicolò ; Lugosi, Gábor
Author_Institution :
Polo Didattico e di Ricerca, Milan Univ., Italy
fYear :
2000
fDate :
2000
Firstpage :
98
Abstract :
We investigate on-line prediction of individual sequences. Given a class of predictors, the goal is to predict as well as the best predictor in the class, where the loss is measured by the self information (logarithmic) loss function. The excess loss (regret) is closely related to the redundancy of the associated lossless universal code. Using Shtarkov´s theorem (1987) and tools from empirical process theory, we prove a general upper bound on the best possible (minimax) regret. The bound depends on certain metric properties of the class of predictors and is applicable to both parametric and nonparametric classes of predictors
Keywords :
parameter estimation; prediction theory; sequential codes; Shtarkov´s theorem; best predictor; code redundancy; empirical process theory; excess loss; general upper bound; individual sequences; logarithmic loss function; lossless universal code; metric properties; minimax regret; nonparametric predictors; on-line prediction; parametric predictors; predictor logarithmic loss; reference codes; self information; sequential lossless codes; worst-case bounds; Data compression; Economic forecasting; Loss measurement; Maximum likelihood decoding; Maximum likelihood estimation; Minimax techniques; Probability distribution; Time measurement; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2000. Proceedings. IEEE International Symposium on
Conference_Location :
Sorrento
Print_ISBN :
0-7803-5857-0
Type :
conf
DOI :
10.1109/ISIT.2000.866388
Filename :
866388
Link To Document :
بازگشت