DocumentCode :
2385919
Title :
Subcode graphs of linear block codes
Author :
Mittelholzer, Thomas
Author_Institution :
IBM Zurich Res. Lab., Ruschlikon, Switzerland
fYear :
2000
fDate :
2000
Firstpage :
116
Abstract :
The Hamming-distance related lattice of subcodes of a linear code C is represented by a subcode graph. The dimensions of these subcodes and the dimensions of the subcodes of the dual are related by MacWilliams-like identities. The coordinate permutation problem for minimum trellis-complexity is approached by introducing suitable vertex functions on the subcode graph that reflects the trellis-complexity measure. This approach gives a simple new proof for well-known results on maximum-distance separable (MDS) codes and a slight sharpening of the Wolf bound for a large class of binary codes
Keywords :
binary codes; block codes; dual codes; graph theory; linear codes; trellis codes; vertex functions; Hamming-distance related lattice; MDS codes; MacWilliams-like identities; Wolf bound; binary codes; coordinate permutation problem; dual subcodes; linear block codes; maximum-distance separable codes; minimum trellis-complexity; subcode graphs; vertex function; Binary codes; Block codes; Coordinate measuring machines; Galois fields; Genetic mutations; Laboratories; Lattices; Linear code; Search problems; State-space methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2000. Proceedings. IEEE International Symposium on
Conference_Location :
Sorrento
Print_ISBN :
0-7803-5857-0
Type :
conf
DOI :
10.1109/ISIT.2000.866406
Filename :
866406
Link To Document :
بازگشت