DocumentCode :
238781
Title :
Biclustering of gene expression data using Particle Swarm Optimization integrated with pattern-driven local search
Author :
Yangyang Li ; Xiaolong Tian ; Licheng Jiao ; Xiangrong Zhang
Author_Institution :
Int. Res. Center for Intell. Perception & Comput., Xidian Univ., Xi´an, China
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
1367
Lastpage :
1373
Abstract :
Biclustering is of great significance in the analysis of gene expression data and is proven to be a NP-hard problem. Among the existing intelligent optimization algorithms used in the gene expression data analysis, most concentrate on the global search ability but ignore the inherent trajectory information of gene expression data, so the search efficiency is low. In this paper, a pattern-driven local search operator is incorporated in the binary Particle Swarm Optimization (PSO) algorithm in order to improve the search efficiency. Experiments show that our approach is valid.
Keywords :
biology computing; computational complexity; data analysis; genetics; particle swarm optimisation; pattern clustering; search problems; NP-hard problem; PSO; binary particle swarm optimization algorithm; gene expression data analysis; gene expression data biclustering; global search ability; intelligent optimization algorithms; pattern-driven local search operator; search efficiency improvement; trajectory information; Algorithm design and analysis; Convergence; Educational institutions; Gene expression; Optimization; Particle swarm optimization; Trajectory; Biclustering; Gene expression data; Particle swarm optimization (PSO); Pattern-driven;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2014 IEEE Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-6626-4
Type :
conf
DOI :
10.1109/CEC.2014.6900323
Filename :
6900323
Link To Document :
بازگشت