DocumentCode :
2388594
Title :
Hardness of approximating the minimum distance of a linear code
Author :
Micciancio, Daniele ; Dumer, Ilya ; Sudan, Madhu
Author_Institution :
Dept. of Comput. Sci. & Eng., California Univ., San Diego, La Jolla, CA, USA
fYear :
2000
fDate :
2000
Firstpage :
252
Abstract :
We show that the minimum distance d of a linear code is not approximable to within any constant factor in random polynomial time (RP), unless NP equals RP. In the process we show that it is hard to find the nearest codeword even if the number of errors exceeds d/2 by an arbitrarily small fraction εd
Keywords :
computational complexity; linear codes; polynomial approximation; NP-hardness; linear code; minimum distance; nearest codeword; random polynomial time; Computer science; Decoding; Educational institutions; Engineering profession; Lattices; Linear code; Polynomials; Quadratic programming; Random number generation; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2000. Proceedings. IEEE International Symposium on
Conference_Location :
Sorrento
Print_ISBN :
0-7803-5857-0
Type :
conf
DOI :
10.1109/ISIT.2000.866550
Filename :
866550
Link To Document :
بازگشت