Title :
Efficient Monte Carlo CVA estimation
Author :
Ghamami, Samim ; Bo Zhang
Author_Institution :
Center for Risk Manage. Res., Univ. of California, Berkeley, Berkeley, CA, USA
Abstract :
This paper presents an overview of the efficient Monte Carlo counterparty credit risk (CCR) estimation framework recently developed by Ghamami and Zhang (2014). We focus on the estimation of credit value adjustment (CVA), one of the most widely used and regulatory-driven counterparty credit risk measures. Our proposed efficient CVA estimators are developed based on novel applications of well-known mean square error (MSE) reduction techniques in the simulation literature. Our numerical examples illustrate that the efficient estimators outperform the existing crude estimators of CVA substantially in terms of MSE.
Keywords :
Monte Carlo methods; investment; mean square error methods; CCR estimation framework; MSE reduction technique; Monte Carlo CVA estimation; Monte Carlo counterparty credit risk; credit value adjustment; mean square error reduction technique; Contracts; Estimation; Monte Carlo methods; Portfolios; Sampling methods; Silicon; Stochastic processes;
Conference_Titel :
Simulation Conference (WSC), 2014 Winter
Conference_Location :
Savanah, GA
Print_ISBN :
978-1-4799-7484-9
DOI :
10.1109/WSC.2014.7019911