DocumentCode
2390886
Title
An evolutionary based discriminative system for keyword spotting
Author
Tabibian, Shima ; Akbari, Ahmad ; Nasersharif, Babak
Author_Institution
Comput. Eng. Dept., Iran Univ. of Sci. & Technol., Tehran, Iran
fYear
2011
fDate
15-16 June 2011
Firstpage
83
Lastpage
88
Abstract
Keyword spotting refers to detection of all occurrences of any given word in a speech utterance. In this paper, we define the keyword spotting problem as a binary classification problem and propose a discriminative approach for solving it. Our approach exploits evolutionary algorithm to determine the separating hyper plane between two classes: class of sentences containing the target keywords and class of sentences which don´t include the target keywords. The results on TIMIT indicate that the proposed method has good performance equal to 95.7 FOM value (average true detection rate for different false alarm per keyword per hour) and acceptable speed equal to 3.3 RTF (Real Time Factor) value.
Keywords
evolutionary computation; speech recognition; TIMIT; evolutionary algorithm; evolutionary based discriminative system; keyword spotting problem; speech utterance; Biological cells; Evolutionary computation; Feature extraction; Hidden Markov models; Speech; Speech recognition; Training; Keyword spotting; discriminative models; evolutionary algorithm;
fLanguage
English
Publisher
ieee
Conference_Titel
Artificial Intelligence and Signal Processing (AISP), 2011 International Symposium on
Conference_Location
Tehran
Print_ISBN
978-1-4244-9833-8
Type
conf
DOI
10.1109/AISP.2011.5960990
Filename
5960990
Link To Document