DocumentCode :
2391216
Title :
Poster: Visual prediction of time series
Author :
Hao, Ming C. ; Janetzko, Halldór ; Sharma, Ratnesh K. ; Dayal, Umeshwar ; Keim, Daniel A. ; Castellanos, Malu
Author_Institution :
Hewlett-Packard Labs., Palo Alto, CA, USA
fYear :
2009
fDate :
12-13 Oct. 2009
Firstpage :
229
Lastpage :
230
Abstract :
Many well-known time series prediction methods have been used daily by analysts making decisions. To reach a good prediction, we introduce several new visual analysis techniques of smoothing, multi-scaling, and weighted average with the involvement of human expert knowledge. We combine them into a well-fitted method to perform prediction. We have applied this approach to predict resource consumption in data center for next day planning.
Keywords :
data visualisation; smoothing methods; time series; multiscaling technique; smoothing technique; time series prediction methods; visual analysis techniques; weighted average technique; Energy consumption; History; Humans; Marketing and sales; Pattern analysis; Pipelines; Prediction methods; Smoothing methods; Supply chains; Time series analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on
Conference_Location :
Atlantic City, NJ
Print_ISBN :
978-1-4244-5283-5
Type :
conf
DOI :
10.1109/VAST.2009.5333420
Filename :
5333420
Link To Document :
بازگشت