DocumentCode :
239173
Title :
Differential evolution with a species-based repair strategy for constrained optimization
Author :
Chenyang Bu ; Wenjian Luo ; Tao Zhu
Author_Institution :
Sch. of Comput. Sci. & Technol., Univ. of Sci. & Technol. of China, Hefei, China
fYear :
2014
fDate :
6-11 July 2014
Firstpage :
967
Lastpage :
974
Abstract :
Evolutionary Algorithms (EAs) with gradient-based repair, which utilize the gradient information of the constraints set, have been proved to be effective. It is known that it would be time-consuming if all infeasible individuals are repaired. Therefore, so far the infeasible individuals to be repaired are randomly selected from the population and the strategy of choosing individuals to be repaired has not been studied yet. In this paper, the Species-based Repair Strategy (SRS) is proposed to select representative infeasible individuals instead of the random selection for gradient-based repair. The proposed SRS strategy has been applied to εDEag which repairs the random selected individuals using the gradient-based repair. The new algorithm is named SRS-εDEag. Experimental results show that SRS-εDEag outperforms εDEag in most benchmarks. Meanwhile, the number of repaired individuals is reduced markedly.
Keywords :
evolutionary computation; EA; SRS-εDEag algorithm; constrained optimization; differential evolution; evolutionary algorithms; gradient-based repair; species-based repair strategy; Clustering algorithms; Equations; Maintenance engineering; Mathematical model; Sociology; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation (CEC), 2014 IEEE Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-6626-4
Type :
conf
DOI :
10.1109/CEC.2014.6900526
Filename :
6900526
Link To Document :
بازگشت