DocumentCode :
2392732
Title :
Time-varying respiratory pattern characterization in chronic heart failure patients and healthy subjects
Author :
Garde, Ainara ; Giraldo, Beatriz F. ; Jané, Raimon ; Sörnmo, Leif
Author_Institution :
Dept. of ESAII, Univ. Politec. de Catalunya (UPC), Barcelona, Spain
fYear :
2009
fDate :
3-6 Sept. 2009
Firstpage :
4007
Lastpage :
4010
Abstract :
Patients with chronic heart failure (CHF) with periodic breathing (PB) and Cheyne-Stokes respiration (CSR) tend to exhibit higher mortality and poor prognosis. This study proposes the characterization of respiratory patterns in CHF patients and healthy subjects using the envelope of the respiratory flow signal, and autoregressive (AR) time-frequency analysis. In time-varying respiratory patterns, the statistical distribution of the AR coefficients, pole locations, and the spectral parameters that characterize the discriminant band are evaluated to identify typical breathing patterns. In order to evaluate the accuracy of this characterization, a feature selection process followed by linear discriminant analysis is applied. 26 CHF patients (8 patients with PB pattern and 18 with non-periodic breathing pattern (nPB)) are studied. The results show an accuracy of 83.9% with the mean of the main pole magnitude and the mean of the total power, when classifying CHF patients versus healthy subjects, and 83.3% for nPB versus healthy subjects. The best result when classifying CHF patients into PB and nPB was an accuracy of 88.9%, using the coefficient of variation of the first AR coefficient and the mean of the total power.
Keywords :
autoregressive processes; cardiology; medical signal processing; pneumodynamics; statistical distributions; Cheyne-Stokes respiration; autoregressive time-frequency analysis; chronic heart failure; linear discriminant analysis; nonperiodic breathing pattern; periodic breathing; pole locations; respiratory flow; spectral parameters; statistical distribution; time-varying respiratory pattern characterization; Adult; Aged; Algorithms; Female; Heart Failure; Humans; Linear Models; Male; Models, Statistical; Pattern Recognition, Automated; Regression Analysis; Reproducibility of Results; Respiration; Sensitivity and Specificity; Signal Processing, Computer-Assisted; Time Factors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
Conference_Location :
Minneapolis, MN
ISSN :
1557-170X
Print_ISBN :
978-1-4244-3296-7
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/IEMBS.2009.5333501
Filename :
5333501
Link To Document :
بازگشت