DocumentCode :
2398222
Title :
A recursive filter for linear systems on Riemannian manifolds
Author :
Tyagi, Ambrish ; Davis, James W.
Author_Institution :
Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH
fYear :
2008
fDate :
23-28 June 2008
Firstpage :
1
Lastpage :
8
Abstract :
We present an online, recursive filtering technique to model linear dynamical systems that operate on the state space of symmetric positive definite matrices (tensors) that lie on a Riemannian manifold. The proposed approach describes a predict-and-update computational paradigm, similar to a vector Kalman filter, to estimate the optimal tensor state. We adapt the original Kalman filtering algorithm to appropriately propagate the state over time and assimilate observations, while conforming to the geometry of the manifold. We validate our algorithm with synthetic data experiments and demonstrate its application to visual object tracking using covariance features.
Keywords :
Kalman filters; covariance matrices; linear systems; object detection; recursive filters; state estimation; Riemannian manifolds; covariance features; linear dynamical systems; linear systems; optimal tensor state estimation; predict-and-update computational paradigm; recursive filter; symmetric positive definite matrices; vector Kalman filter; visual object tracking; Filtering algorithms; Geometry; Kalman filters; Linear systems; Nonlinear filters; State estimation; State-space methods; Symmetric matrices; Tensile stress; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
Conference_Location :
Anchorage, AK
ISSN :
1063-6919
Print_ISBN :
978-1-4244-2242-5
Electronic_ISBN :
1063-6919
Type :
conf
DOI :
10.1109/CVPR.2008.4587519
Filename :
4587519
Link To Document :
بازگشت