DocumentCode :
2398605
Title :
An Incremental Learning Structure using Granular Computing and Model Fusion With Application to Materials Processing
Author :
Panoutsos, George ; Mahfouf, Mahdi
Author_Institution :
Dept. of Autom. Control & Syst. Eng., Sheffield Univ.
fYear :
2006
fDate :
Sept. 2006
Firstpage :
367
Lastpage :
372
Abstract :
This paper introduces a neural-fuzzy (NF) modeling structure for offline incremental learning. Using a hybrid model updating algorithm (supervised/unsupervised) this NF structure has the ability to adapt in an additive way to new input-output mappings and new classes. Data granulation is utilised along with a NF structure to create a high performance yet transparent model that entails the core of the system. A model fusion approach is then employed to provide the incremental update of the system. The proposed system is tested against a multidimensional modeling environment consisting of a complex, non-linear and sparse database
Keywords :
data structures; fuzzy neural nets; learning (artificial intelligence); materials handling; sensor fusion; adaptive intelligent system; complex database; data fusion; data granulation; granular computing; hybrid model updating algorithm; incremental learning; materials processing; model fusion; multidimensional modeling environment; neural-fuzzy modeling; nonlinear database; sparse database; Competitive intelligence; Computational intelligence; Databases; Intelligent systems; Maintenance engineering; Materials processing; Multidimensional systems; Neural networks; Noise measurement; Systems engineering and theory; Adaptive Intelligent Systems; Data Fusion; Granular Computing; Incremental Learning; Neural-Fuzzy Modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems, 2006 3rd International IEEE Conference on
Conference_Location :
London
Print_ISBN :
1-4244-01996-8
Electronic_ISBN :
1-4244-01996-8
Type :
conf
DOI :
10.1109/IS.2006.348447
Filename :
4155454
Link To Document :
بازگشت