DocumentCode :
2398611
Title :
Vertex strongly distinguishing total coloring of complete bipartite graph K3,3
Author :
Chen, Xiang´en ; Hu, Zhitao ; Yao, Bing ; Zhang, Xiaomin ; Wei, Jiajing
Author_Institution :
Coll. of Math. & Inf. Sci., Northwest Normal Univ., Lanzhou, China
fYear :
2012
fDate :
19-20 May 2012
Firstpage :
2687
Lastpage :
2691
Abstract :
Let f be a proper total coloring of G. For each x ∈ V(G), let C(x) denote the set of all colors of the elements incident with or adjacent to x and the color of x. If ∀u, v ∈ V(G), u ≠ v, we have C(u) ≠ C(v), then f is called a vertex strongly distinguishing total coloring of G. The minimum number k for which there exists a vertex strongly distinguishing total coloring of G using k colors is called the vertex strongly distinguishing total chromatic number of G. The vertex strongly distinguishing total chromatic number of complete bipartite graph K3,3 is obtained in this paper.
Keywords :
graph colouring; complete bipartite graph coloring; vertex strongly distinguishing total chromatic number; vertex strongly distinguishing total coloring; Bipartite graph; Color; Educational institutions; Image color analysis; Labeling; Satellites; complete bipartite graphs; proper total coloring; vertex strongly distinguishing total chromatic number; vertex strongly distinguishing total coloring;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems and Informatics (ICSAI), 2012 International Conference on
Conference_Location :
Yantai
Print_ISBN :
978-1-4673-0198-5
Type :
conf
DOI :
10.1109/ICSAI.2012.6223608
Filename :
6223608
Link To Document :
بازگشت