Title :
Context-dependent kernel design for object matching and recognition
Author :
Sahbi, Hichem ; Audibert, Jean-Yves ; Rabarisoa, Jaonary ; Keriven, Renaud
Author_Institution :
Telecom ParisTech, CNRS, Paris
Abstract :
The success of kernel methods including support vector networks (SVMs) strongly depends on the design of appropriate kernels. While initially kernels were designed in order to handle fixed-length data, their extension to unordered, variable-length data became more than necessary for real pattern recognition problems such as object recognition and bioinformatics. We focus in this paper on object recognition using a new type of kernel referred to as ldquocontext-dependentrdquo. Objects, seen as constellations of local features (interest points, regions, etc.), are matched by minimizing an energy function mixing (1) a fidelity term which measures the quality of feature matching, (2) a neighborhood criteria which captures the object geometry and (3) a regularization term. We will show that the fixed-point of this energy is a ldquocontext-dependentrdquo kernel (ldquoCDKrdquo) which also satisfies the Mercer condition. Experiments conducted on object recognition show that when plugging our kernel in SVMs, we clearly outperform SVMs with ldquocontext-freerdquo kernels.
Keywords :
image matching; object recognition; context-dependent kernel design; feature matching; object geometry; object matching; object recognition; Bioinformatics; Energy measurement; Face recognition; Focusing; Histograms; Kernel; Object recognition; Pattern recognition; Support vector machines; Telecommunications;
Conference_Titel :
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
978-1-4244-2242-5
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2008.4587607