Title :
Spectrally optimal factorization of incomplete matrices
Author :
Aguiar, Pedro M Q ; Xavier, João M F ; Stosic, Marko
Author_Institution :
Inst. for Syst. & Robot. / IST, Lisbon
Abstract :
From the recovery of structure from motion to the separation of style and content, many problems in computer vision have been successfully approached by using bilinear models. The reason for the success of these models is that a globally optimal decomposition is easily obtained from the singular value decomposition (SVD) of the observation matrix. However, in practice, the observation matrix is often incomplete, the SVD can not be used, and only suboptimal solutions are available. The majority of these solutions are based on iterative local refinements of a given cost function, and lack any guarantee of convergence to the global optimum. In this paper, we propose a globally optimal solution, for particular patterns of missing entries. To achieve this goal, we re-formulate the problem as the minimization of the spectral norm of the matrix of residuals, i.e., we seek the completion of the observation matrix such that the largest singular value of its difference to a low rank matrix is the smallest possible. The class of patterns of missing entries we deal with is known as the Young diagram, which includes, as particular cases, many relevant situations, such as the missing of an entire submatrix. We describe experiments that illustrate how our globally optimal solution has impact in practice.
Keywords :
computer vision; iterative methods; minimisation; singular value decomposition; Young diagram; bilinear model; computer vision; cost function; iterative local refinement; low rank matrix; minimization problem; observation matrix; singular value decomposition; spectrally optimal incomplete matrix factorization; Approximation algorithms; Computer vision; Cost function; Iterative algorithms; Large-scale systems; Matrix decomposition; Motion estimation; Photometry; Robot vision systems; Singular value decomposition;
Conference_Titel :
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
978-1-4244-2242-5
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2008.4587675