Title :
Object categorization using co-occurrence, location and appearance
Author :
Galleguillos, Carolina ; Rabinovich, Andrew ; Belongie, Serge
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of California, San Diego, La Jolla, CA
Abstract :
In this work we introduce a novel approach to object categorization that incorporates two types of context-co-occurrence and relative location - with local appearance-based features. Our approach, named CoLA (for co-occurrence, location and appearance), uses a conditional random field (CRF) to maximize object label agreement according to both semantic and spatial relevance. We model relative location between objects using simple pairwise features. By vector quantizing this feature space, we learn a small set of prototypical spatial relationships directly from the data. We evaluate our results on two challenging datasets: PASCAL 2007 and MSRC. The results show that combining co-occurrence and spatial context improves accuracy in as many as half of the categories compared to using co-occurrence alone.
Keywords :
image segmentation; vector quantisation; CRF; CoLA; PASCAL 2007; conditional random field; cooccurrence location appearance; local appearance-based features; object categorization; object label agreement; pairwise features; prototypical spatial relationships; semantic-spatial relevance; Computer science; Computer vision; Context modeling; Face detection; Image segmentation; Layout; Lighting; Object recognition; Prototypes; Psychology;
Conference_Titel :
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
978-1-4244-2242-5
Electronic_ISBN :
1063-6919
DOI :
10.1109/CVPR.2008.4587799