• DocumentCode
    2403029
  • Title

    Simultaneous super-resolution and feature extraction for recognition of low-resolution faces

  • Author

    Hennings-Yeomans, Pablo H. ; Baker, Simon ; Kumar, B. V K Vijaya

  • Author_Institution
    ECE Dept., Carnegie Mellon Univ., Pittsburgh, PA
  • fYear
    2008
  • fDate
    23-28 June 2008
  • Firstpage
    1
  • Lastpage
    8
  • Abstract
    Face recognition degrades when faces are of very low resolution since many details about the difference between one person and another can only be captured in images of sufficient resolution. In this work, we propose a new procedure for recognition of low-resolution faces, when there is a high-resolution training set available. Most previous super-resolution approaches are aimed at reconstruction, with recognition only as an after-thought. In contrast, in the proposed method, face features, as they would be extracted for a face recognition algorithm (e.g., eigenfaces, Fisher-faces, etc.), are included in a super-resolution method as prior information. This approach simultaneously provides measures of fit of the super-resolution result, from both reconstruction and recognition perspectives. This is different from the conventional paradigms of matching in a low-resolution domain, or, alternatively, applying a super-resolution algorithm to a low-resolution face and then classifying the super-resolution result. We show, for example, that recognition of faces of as low as 6 times 6 pixel size is considerably improved compared to matching using a super-resolution reconstruction followed by classification, and to matching with a low-resolution training set.
  • Keywords
    face recognition; feature extraction; image matching; image resolution; face recognition; feature extraction; low resolution faces; super resolution algorithm; Data mining; Degradation; Face recognition; Feature extraction; Image reconstruction; Image resolution; Interpolation; Probes; Surveillance; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
  • Conference_Location
    Anchorage, AK
  • ISSN
    1063-6919
  • Print_ISBN
    978-1-4244-2242-5
  • Electronic_ISBN
    1063-6919
  • Type

    conf

  • DOI
    10.1109/CVPR.2008.4587810
  • Filename
    4587810