DocumentCode :
2410808
Title :
Radiation Characteristics of Photonic Antenna for Optical Wireless Communication using Beam Propagation Method
Author :
Suresh, L.R.D. ; Sundaravadivelu, S.
Author_Institution :
Dept. of ECE, Thiagarajar Coll. of Eng., Madurai
fYear :
2007
fDate :
22-24 Feb. 2007
Firstpage :
294
Lastpage :
298
Abstract :
The optical wireless communication is the only solution to the emerging next generation wireless communication. The photonic antennas play major role in the development of optical wireless communications. This photonic antenna transfers light energy from optical waveguide to free-space with high directionality and act as a matching device between optical source and channel (atmosphere). The analysis of light propagation through waveguide structures is indispensable in designing complex photonic devices. The optical waveguide grating structures with multiple longitudinal reflecting interfaces are analyzed to form photonic antennas. The multilayer triangular grating structure is analyzed using beam propagation method for its ability and suitability to optical wireless communication. The beam propagation method (BPM), extensively used tool for computer simulation of light propagation in optical waveguide structures, has been developed for analyzing optical waveguides with discontinuities in transmission, reflection and radiations. The discontinuities comprise changes in core thickness and effective refractive index. The optical powers radiated and transmitted at an abrupt discontinuity in waveguide gratings are calculated numerically by means of BPM for TE modes, and applied to the eigen mode and propagating beam analysis of that structure. The current method achieves soaring precision and converging time is significantly abridged and it is proportional to the log of the total number of periods in the waveguide than that in the conventional time-domain method. This paper intends a novel integrated photonic antenna with snooty directional efficiency and radiation which can be tattered for protracted distance optical wireless communication. The consequences confirm that it is promising to curtail radiation loss under sturdy mode coupling conditions. This method can be used for modeling of laser beam propagation in non-homogeneous atmosphere
Keywords :
antenna radiation patterns; arrayed waveguide gratings; eigenvalues and eigenfunctions; light propagation; light transmission; linear antenna arrays; optical communication equipment; refractive index; BPM; beam propagation method; eigen mode; laser beam propagation; light propagation; matching device; multilayer triangular grating structure; multiple longitudinal reflecting interfaces; optical power radiation; optical power transmission; optical waveguide; optical wireless communication; photonic antenna; radiation characteristics; refractive index; Antennas and propagation; Directive antennas; Gratings; Optical devices; Optical propagation; Optical refraction; Optical variables control; Optical waveguides; Waveguide discontinuities; Wireless communication; Beam Propagation Method; effective refractive index; optical waveguide grating structures; optical wireless communication; photonic antennas;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, Communications and Networking, 2007. ICSCN '07. International Conference on
Conference_Location :
Chennai
Print_ISBN :
1-4244-0997-7
Electronic_ISBN :
1-4244-0997-7
Type :
conf
DOI :
10.1109/ICSCN.2007.350750
Filename :
4156632
Link To Document :
بازگشت