DocumentCode :
2411782
Title :
A Gauss-Markov model for hyperspectral texture analysis of urban areas
Author :
Rellier, Guillaume ; Descombes, Xavier ; Zerubia, Josiane ; Falzon, Frédéric
Author_Institution :
Ariana-Projet Commun., CNRS/INRIA/UNSA, Sophia Antipolis, France
Volume :
1
fYear :
2002
fDate :
2002
Firstpage :
692
Abstract :
In this paper we deal with the problem of texture segmentation using a joint spectral and spatial analysis of pixel distribution. Hyperspectral images are considered and, using a Markovian model, we develop a vectorial approach for this image type. A classification algorithm using this model was implemented for extracting and classifying urban areas. Results obtained from AVIRIS images are shown.
Keywords :
Gaussian processes; Markov processes; feature extraction; image classification; image segmentation; image texture; spectral analysis; AVIRIS images; Gauss-Markov model; Markovian model; feature extraction; hyperspectral texture analysis; image classification; pixel distribution; spatial analysis; spectral analysis; texture segmentation; urban areas; Gaussian processes; Hyperspectral imaging; Hyperspectral sensors; Image resolution; Image texture analysis; Performance analysis; Pixel; Radiometry; Remote sensing; Urban areas;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2002. Proceedings. 16th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-1695-X
Type :
conf
DOI :
10.1109/ICPR.2002.1044850
Filename :
1044850
Link To Document :
بازگشت