Title :
A modification to the group delay and simulated annealing technique for characterization of peripheral nerve fiber size distributions for non-deterministic sampled data
Author :
Szlavik, Robert B.
Author_Institution :
Dept. of Biomed. & Gen. Eng., California Polytech. State Univ., San Luis Obispo, CA, USA
Abstract :
The ability to determine the characteristics of peripheral nerve fiber size distributions would provide additional information to clinicians for the diagnosis of specific pathologies of the peripheral nervous system. Investigation of these conditions, using electro-diagnostic techniques, is advantageous in the sense that such techniques tend to be minimally invasive yet provide valuable diagnostic information. One of the principal electro-diagnostic tools available to the clinician is the nerve conduction velocity test. While the peripheral nerve conduction velocity test can provide useful information to the clinician regarding the viability of the nerve under study, it is a single parameter test that yields no detailed information about the characteristics of the functioning nerve fibers within the nerve trunk. In previous work, the efficacy of the group delay and simulated annealing approach was demonstrated in the context of a simulation study where deterministic functions were used to represent the single fiber evoked potentials. In this study we present a modification to the approach discussed previously that is applicable to non-deterministic functions of sampled data.
Keywords :
bioelectric potentials; neurophysiology; simulated annealing; electrodiagnostic techniques; group delay; nerve fibers; nerve trunk; nondeterministic sampled data; peripheral nerve conduction velocity test; peripheral nerve fiber size distributions; simulated annealing technique; single fiber evoked potentials; Algorithms; Evoked Potentials; Humans; Nerve Fibers; Neural Conduction; Peripheral Nerves;
Conference_Titel :
Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE
Conference_Location :
Minneapolis, MN
Print_ISBN :
978-1-4244-3296-7
Electronic_ISBN :
1557-170X
DOI :
10.1109/IEMBS.2009.5334609