DocumentCode :
2413958
Title :
Generalizing grasps across partly similar objects
Author :
Detry, Renaud ; Ek, Carl Henrik ; Madry, Marianna ; Piater, Justus ; Kragic, Danica
Author_Institution :
Active Perception Lab., KTH R. Inst. of Technol., Stockholm, Sweden
fYear :
2012
fDate :
14-18 May 2012
Firstpage :
3791
Lastpage :
3797
Abstract :
The paper starts by reviewing the challenges associated to grasp planning, and previous work on robot grasping. Our review emphasizes the importance of agents that generalize grasping strategies across objects, and that are able to transfer these strategies to novel objects. In the rest of the paper, we then devise a novel approach to the grasp transfer problem, where generalization is achieved by learning, from a set of grasp examples, a dictionary of object parts by which objects are often grasped. We detail the application of dimensionality reduction and unsupervised clustering algorithms to the end of identifying the size and shape of parts that often predict the application of a grasp. The learned dictionary allows our agent to grasp novel objects which share a part with previously seen objects, by matching the learned parts to the current view of the new object, and selecting the grasp associated to the best-fitting part. We present and discuss a proof-of-concept experiment in which a dictionary is learned from a set of synthetic grasp examples. While prior work in this area focused primarily on shape analysis (parts identified, e.g., through visual clustering, or salient structure analysis), the key aspect of this work is the emergence of parts from both object shape and grasp examples. As a result, parts intrinsically encode the intention of executing a grasp.
Keywords :
image matching; manipulators; robot vision; unsupervised learning; dictionary; dimensionality reduction; generalize grasping strategies; grasp planning; grasp transfer problem; learning; object matching; object parts; proof-of-concept experiment; robot grasping; similar objects; unsupervised clustering algorithms; Covariance matrix; Databases; Dictionaries; Grasping; Grippers; Planning; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2012 IEEE International Conference on
Conference_Location :
Saint Paul, MN
ISSN :
1050-4729
Print_ISBN :
978-1-4673-1403-9
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ICRA.2012.6224992
Filename :
6224992
Link To Document :
بازگشت