DocumentCode :
2419571
Title :
Automatic data driven vegetation modeling for lidar simulation
Author :
Deschaud, Jean-Emmanuel ; Prasser, David ; Dias, M. Freddie ; Browning, Brett ; Rander, Peter
Author_Institution :
Nat. Robot. Eng. Center & Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2012
fDate :
14-18 May 2012
Firstpage :
5030
Lastpage :
5036
Abstract :
Traditional lidar simulations render surface models to generate simulated range data. For objects with welldefined surfaces, this approach works well, and traditional 3D scene reconstruction algorithms can be employed to automatically generate the surface models. This approach breaks down, though, for many trees, tall grasses, and other objects with fine-scale geometry: surface models do not easily represent the geometry, and automated reconstruction from real data is difficult. In this paper, we introduce a new stochastic volumetric model that better captures the complexities of real lidar data of vegetation and is far better suited for automatic modeling of scenes from field collected lidar data. We also introduce several methods for automatic modeling and for simulating lidar data utilizing the new model. To measure the performance of the stochastic simulation we use histogram comparison metrics to quantify the differences between data produced by the real and simulated lidar. We evaluate our approach on a range of real world datasets and show improved fidelity for simulating geo-specific outdoor, vegetation scenes.
Keywords :
image reconstruction; vegetation mapping; 3D scene reconstruction algorithms; automated reconstruction; automatic data; fine-scale geometry; geo-specific outdoor simulation; lidar simulation; stochastic volumetric simulation; surface models; vegetation modeling; Data models; Laser beams; Laser radar; Permeability; Robot sensing systems; Solid modeling; Vegetation mapping;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2012 IEEE International Conference on
Conference_Location :
Saint Paul, MN
ISSN :
1050-4729
Print_ISBN :
978-1-4673-1403-9
Electronic_ISBN :
1050-4729
Type :
conf
DOI :
10.1109/ICRA.2012.6225269
Filename :
6225269
Link To Document :
بازگشت