DocumentCode :
2420425
Title :
Selection of optimal methods for intelligent process monitoring
Author :
Shapovalov, Romn ; Whiteley, James R.
Author_Institution :
Sch. of Chem. Eng., Oklahoma State Univ., Stillwater, OK, USA
fYear :
2003
fDate :
8-8 Oct. 2003
Firstpage :
679
Lastpage :
684
Abstract :
This work proposes a statistics-based approach to the selection of the best-performing numerical methods for the detection and diagnosis of faults in the process industry. It is assumed that the performance of each method cannot be measured directly for each user-specified fault. It is shown how in those cases one can evaluate the expected performance of each method for fault detection and diagnosis by using the nonparametric statistical tests and kernel density estimation.
Keywords :
chemical technology; fault diagnosis; process monitoring; statistics; fault detection; fault diagnosis; intelligent process monitoring; kernel density estimation; nonparametric statistical tests; numerical methods; process industry;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control. 2003 IEEE International Symposium on
Conference_Location :
Houston, TX, USA
ISSN :
2158-9860
Print_ISBN :
0-7803-7891-1
Type :
conf
DOI :
10.1109/ISIC.2003.1254717
Filename :
1254717
Link To Document :
بازگشت