DocumentCode :
2420467
Title :
An MRF model-based method for unsupervised textured image segmentation
Author :
Noda, Hideki ; Shirazi, Mehdi N. ; Kawaguchi, Eiji
Author_Institution :
Dept. of Electr., Electron. & Comput. Eng., Kyushu Inst. of Technol., Kitakyushu, Japan
Volume :
2
fYear :
1996
fDate :
25-29 Aug 1996
Firstpage :
765
Abstract :
This paper proposes a Markov random field (MRF) model-based method for unsupervised segmentation of images consisting of multiple textures. This method uses a hierarchical MRF with two layers, the first layer representing an unobservable region image and the second layer representing multiple textures which cover each region. This method is an iterative method based on the framework of the expectation and maximization (EM) method. We make use of an approximation for the Baum function in the expectation step. This reduces the parameter estimation to the maximum likelihood (ML) estimation given the current estimate of the region image. An estimation of the region image (image segmentation) is carried out by a deterministic relaxation method proposed by us
Keywords :
Markov processes; image segmentation; image texture; iterative methods; maximum likelihood estimation; statistical analysis; Baum function approximation; ML estimation; MRF model-based method; Markov random field; deterministic relaxation method; expectation step; image segmentation; maximum likelihood estimation; multiple texture images; parameter estimation; unobservable region image; unsupervised segmentation; unsupervised textured image segmentation; Annealing; Geometry; Image segmentation; Iterative methods; Markov random fields; Maximum likelihood estimation; Parameter estimation; Pixel; Relaxation methods; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1996., Proceedings of the 13th International Conference on
Conference_Location :
Vienna
ISSN :
1051-4651
Print_ISBN :
0-8186-7282-X
Type :
conf
DOI :
10.1109/ICPR.1996.546926
Filename :
546926
Link To Document :
بازگشت