Title :
An analytical least-squares solution to the odometer-camera extrinsic calibration problem
Author :
Guo, Chuangxin ; Mirzaei, F.M. ; Roumeliotis, Stergios I.
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
Abstract :
In order to fuse camera and odometer measurements, we first need to estimate their relative transformation through the so-called odometer-camera extrinsic calibration. In this paper, we present a two-step analytical least-squares solution for the extrinsic odometer-camera calibration that (i) is not iterative and finds the least-squares optimal solution without any initialization, and (ii) does not require any special hardware or the presence of known landmarks in the scene. Specifically, in the first step, we estimate a subset of the 3D relative rotation parameters by analytically minimizing a least-squares cost function. We then back-substitute these estimates in the measurement constraints, and determine the rest of the 3D transformation parameters by analytically minimizing a second least-squares cost function. Simulation and experimental results are presented that validate the efficiency and accuracy of the proposed algorithm.
Keywords :
calibration; distance measurement; image sensors; least squares approximations; robot vision; 3D transformation parameters; analytical least-squares solution; least-squares cost function; odometer-camera extrinsic calibration problem; second least-squares cost function; Calibration; Cameras; Noise; Noise measurement; Robot motion; Robot vision systems;
Conference_Titel :
Robotics and Automation (ICRA), 2012 IEEE International Conference on
Conference_Location :
Saint Paul, MN
Print_ISBN :
978-1-4673-1403-9
Electronic_ISBN :
1050-4729
DOI :
10.1109/ICRA.2012.6225339